If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=-16H^2+1250
We move all terms to the left:
(H)-(-16H^2+1250)=0
We get rid of parentheses
16H^2+H-1250=0
a = 16; b = 1; c = -1250;
Δ = b2-4ac
Δ = 12-4·16·(-1250)
Δ = 80001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80001}=\sqrt{9*8889}=\sqrt{9}*\sqrt{8889}=3\sqrt{8889}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{8889}}{2*16}=\frac{-1-3\sqrt{8889}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{8889}}{2*16}=\frac{-1+3\sqrt{8889}}{32} $
| 3x/2+4x/3=5x+4/6 | | 5y-15=15y= | | 5x+6=-4x= | | h×80=-16(80)^2+64(80)+80 | | h(80)=-16(80)^2+64(80)+80 | | X/8+x/2=-3 | | 64+80t^-1+-16t(t)=16t^2+64(t)+80 | | 4-2(3-2y)=21-6y | | 90+-16t(t)=-16t^2+90t | | 90+16t=-16t^2+90t | | 90+16t(t)=-16t^2+90t | | (x+4)^2=(x-1)^2-5 | | 8x(x+7)=8x^2+(49x-14) | | x=8.428571429 | | X(2x-5)=2x^2-3x+2 | | x=(0-3.5)^2(0,002)+(1-3.5)^2(0.029)+(2-3.5)^2(0.132)+(3-3.5)^2(0.309)+(4-3.5)^2(0.360)+(5-3.5)^2(0.168) | | 2x+6=3x+6-32 | | 2x-(x+4)=3x-4 | | x=(0-3.5)^2(0.002) | | 9x-16=28 | | -41+3x=3x-23-18+41 | | 5k^2-k-42=6 | | 96-4x=-28-96 | | 2p+3p=43-19p | | (3x-18)=108 | | 5x(2x-4)=15 | | 8k^2+5k+6=4 | | 30-x/x-15=2/5 | | x-4-4=6×+9-8x | | 5n^2+4=12 | | b+60=85 | | 136-51y=5y+2 |